

Exercise 2

CH3OH is used as a source to generate hydrogen for a vehicle fuel cell. Methanol and steam are introduced into a reforming plant. This plant converts these two streams into CO2, CO and H2, having also H2O in the outlet stream of the reformer.

Considering that the reactor is fed with 1 kg of CH3OH and 1 kg of H2O, the exit temperature of the products being 300°C.

a) Determine the molar composition of the products for a pressure of 4 MPa and 5 MPa.b)

The chemical reaction of reforming for steam:

 $CH_{3}OH + H_{2}O \leftrightarrow 3 H_{2} + CO_{2}$

CO + 2 H2 <---> CH3OH (i) CO + H2O <---> H2 + CO2 (ii)

Subtracting both expressions:

(i) - (ii) ---> 3 H2 + CO2 <---> H2O + CH3OH

 $K_{SR} = (K_i/K_{ij})^{-1}$ for the reaction CH3OH + H2O <----> 3 H2 + CO2

Where, in the reformer, the water gas shift reaction is:

 $H_2 + CO_2 \leftrightarrow CO + H_2O$

The equilibrium constant is given as a function of the mole fractions or numbers of moles of the substances involved, depending on the temperature in degrees Kelvin.

$$K_{ii} = K_{WGS} = \frac{y_{CO} y_{H2O}}{y_{H2} y_{CO2}} = \frac{n_{CO} n_{H2O}}{n_{H2} n_{CO2}} = 1/\exp(-3.798 + 4160/T)$$
(1)

Fort he reaction: CO + 2 H2 <---> CH3OH (i)

According to the authors, Thomas & Portalski:

 $K_i = \exp(10.20+3921/T-7.971 \cdot \log 10(T)+0.002499 \cdot T-0.0000002953 \cdot T^2)$

According to the author, Kotowski:

 $K_i = \exp(8.729+3981/T-7.411 \cdot \log 10(T)+0.002403 \cdot T+0.000000215 \cdot T^2)$

The equilibrium constant is given as a function of the mole fractions or numbers of moles of the substances involved, depending on the temperature in degrees Kelvin.

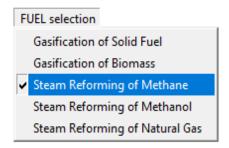
$$K_{SR} = \frac{y_{H2}^3 y_{CO2}}{y_{CH3OH} y_{H2O}} P_{TOT}^2 = \frac{n_{H2}^3 n_{CO2}}{n_{CH3OH} n_{H2O} n_{TOT}^2} P_{TOT}^2$$
(2)

The products obtained are: methanol (CH₃OH), carbon monoxide (CO), water (H₂O), carbon dioxide (CO₂), and hydrogen (H₂).

Assuming that 1 kmol of CH₃OH and α kmol of H₂O enter:

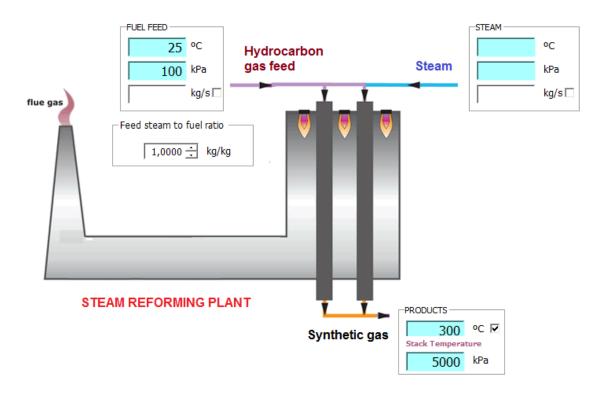
Chemical	Initial (mol)	Change (mol)	End (mol)
CH₃OH	1	- <i>X</i> ₁	1- <i>X</i> 1
H ₂ O	α	$-X_1+X_2$	$\alpha - X_1 + X_2$
CO ₂	0	<i>X</i> ₁ - <i>X</i> ₂	<i>X</i> ₁ - <i>X</i> ₂
CO	0	X2	X2
H ₂	0	3 <i>x</i> ₁ - <i>x</i> ₂	3 <i>x</i> ₁ - <i>x</i> ₂
Moles totales	1+α	2 <i>x</i> ₁	1+α+2 <i>x</i> 1

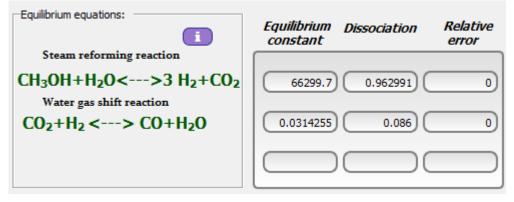
For a pressure other than 1 atm:

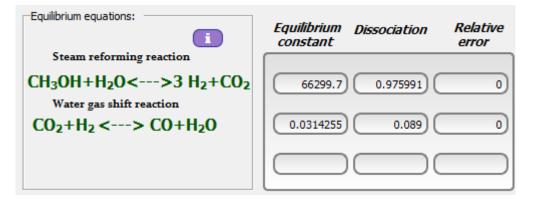

$$K_{SR} = \frac{(3x_1 - x_2)^3 (x_1 - x_2)}{(1 - x_1)(\alpha - x_1 + x_2)(1 + \alpha + 2x_1)^2} P_{TOT}^2 = 10^{(2073/T - 2.029)}$$
(3a)

$$K_{WGS} = \frac{(x_2)(\alpha - x_1 + x_2)}{(3x_1 - x_2)(x_1 - x_2)} = 1/\exp(-3.798 + 4160/T)$$
(3b)

Knowing the amount of kilograms that enter the methane and water reactor, it is very easy to obtain the value of moles of water (α) that enter.


 α = kg H₂O/ kg CH₃OH (32/18) kmoles H₂O / kmoles CH₃OH = 1.777 kmoles H₂O / kmoles CH₃OH


The "THERMOGasification" software has the calculation algorithms explained in the previous problem. Using it, the following results are achieved:



Combustion Products FLUE GAS						
	F	On wet basis 1	On dry basis			
🔲 mol/mol fuel	kg/kg fuel	Mole %	Mass %			
CO ₂ 0.87699	1.20455	18.6411	60.2275			
CO 0.08600	0.07518	1.8280	3.7590			
H ₂ O 0.90162	0.50692	19.1646	25.3460			
H ₂ 2.80297	0.17635	59.5793	8.8175			
CH ₃ OH 0.03701	0.03701	0.7867	1.8505			
TOTAL 4.7046	2.0000	100.00 %	100.00 %			

Combustion Products FLUE GAS						
	I	On wet basis	On dry basis			
🔲 mol/mol fuel	kg/kg fuel	Mole %	Mass %			
CO ₂ 0.88699	1.21828	18.7501	60.9140			
CO 0.08900	0.07780	1.8814	3.8900			
H ₂ O 0.89162	0.50130	18.8479	25.0650			
H ₂ 2.83897	0.17861	60.0129	8.9305			
CH ₃ OH 0.02401	0.02401	0.5075	1.2005			
TOTAL 4.7306	2.0000	(100.00) %	100.00 %			

Increasing the pressure decreases the production of hydrogen and CO_2 . At a pressure of 4 MPa the ratio of H_2 produced to CO_2 produced is 3.200, while at a higher pressure of 5 MPa it is slightly lower than 3.196.